Defending Earth’s Cosmic Borders

Red Fez, 13 February, 2016.

I

The odds of getting killed by a meteorite are 1 in 75 million, according to the U.S. National Safety Council. The numbers suggest, therefore, that we face no threat from beyond the blue.

Still.

On a cold morning, on February 15, 2013, around 9:20 a.m., as people were going about their business in the Russian town of Chelyabinsk, just east of the Urals, an object weighing 28 million pounds, hurtled to Earth at 42,000 m.p.h. and exploded in the skies above them in a dazzling white flash that made the Sun look like a lantern in a Marrakesh souk. The spectacular hot blaze could be seen from miles and miles away.

Window panes blew out as the shockwave—created when a wave beats the speed of sound—hit the ground. Shards of broken glass struck people. 1,500 were hurt. The roof of a zinc factory caved in. In the neighboring town of Yemazhelinsk, the statue of Russia’s treasured national bard, Alexander Pushkin, was shattered. Over 7,000 buildings, in six cities, suffered cracks. This was the biggest thing to hit Earth in the last 108 years.

Turn the clock back to another morning—to June 30, 1908, a little after 7:00 a.m. The location is a conifer-rich forest near the top of the world. An asteroid, almost 400 feet across, plunges Earthward and as it does so, it heats the surrounding air to a broiling 44,500 Fahrenheit and blows up over Siberia’s Tunguska River.

The blast released the energy equivalent of about 185 nuclear warheads detonated over Hiroshima, Japan. Dense clouds formed over the region. As a side-effect, the night skies were aglow for days after the event. Trees across an area of 825 square miles were flattened and herds of reindeer perished.

Much earlier, when Earth was in its infancy, it was smacked by a chunk, half the size of Manhattan. The impact wiped out nearly all the large vertebrates, including the non-avian dinosaurs. Unlike those that appeared over Russia, this space rock made a violent touchdown. The thump created a giant crater, 110 miles wide, near what’s present-day Chicxulub, Mexico.

II

Earth resides in a swarm of “near-Earth objects” (N.E.O.s for short)—comets and asteroids that have been deviated by the gravitational willpower of nearby planets into orbits that bring them into our planetary neighborhood.

Primordial denizens, they’re planetary flotsam left over from the formation of the solar system, 4.6 billion years ago. While comets are the debris from the outer planets (Jupiter, Saturn, Uranus and Neptune), asteroids are detritus from the inner worlds (Mercury, Venus, Earth and Mars.)

Asteroids are irregular-shaped bodies, anywhere in size between 600 miles and a pea, which float in the belt between Mars and Jupiter. Like planets, they too, spin around the Sun. The smaller ones—anything under three feet—are called “meteoroids.”

Once a near-Earth object breaches Earth’s protective airy shell, it becomes a “meteor.” Typically, they’re so small that they burn in the mesosphere due to friction. On a cloudless night, far from urban pollution, one can see them as a glowing streak, popularly called a “shooting star.” But sometimes, they’re more robust and come apart with sound and fury, turning into a “bolide,” a.k.a.“fireball.”

Rarely do they survive their long, fiery passage through Earth’s atmosphere and slam into a field, a farm, a tarn, a knoll, a garden, a patio—anywhere. At that stage, they’re called a “meteorite.” Moreover, every day, Earth is bombarded by more than 200,000 pounds of stardust and sand grain-size motes, raining down continually, without our knowledge.

III

In 1992, the U.S. Congress requested NASA to do a study of the near-Earth object population and assess the risks they posed. The report, “Spaceguard Survey,” also led to a mandate that the agency locate most of the asteroids that were, at least, half a mile or more, within a decade.

It determined that an object, 0.6 miles or more, would have repercussions that’d be felt worldwide. Over and above leaving a vast trail of devastation, locally, it’d also spew so much ejecta into the air that it’d disrupt the weather pattern a whole continent away. A global pall of dust would block out the Sun, crops would fail and people would die of starvation.

A boulder, lot larger—six miles or greater—would trigger mass extinction. Fortunately, the chances of a projectile of this magnitude falling to Earth are very, very, slim. The last time it happened was 66 million years. The bigger the object, the less likely it is to stray into our backyard.

IV

NASA’s Near-Earth Objects Observation Program projects that there about 25,000 asteroids that are about 460 feet or larger and could come within five million miles of Earth. These boulders are worrisome because they could wreak havoc on an area the size of a state if one were to make landfall. So far, only about 7,700 of them have been cataloged.

The need for near-Earth object detection and deflection has gained so much attention lately, that in the last six years, there’s been more than a ten-fold increase in the federal funding, jumping from $4 million in 2010 to $50 million in 2016.

In the first week of January, this year, NASA announced that it’d consolidated all its ongoing near-Earth object-related projects under one roof as the Planetary Defense Coordination Office. The new department, which will be headquartered at the agency’s Science Mission Directorate in Washington, D.C., will be in charge of “planetary defense.”

Once a ground or space telescope detects a near-Earth object, its details are forwarded to the International Astronomical Union’s Minor Planet Center, housed at the Smithsonian Astrophysical Observatory, in Cambridge, Massachusetts, where it’s put in a comprehensive database. On the opposite coast, at NASA’s Center for N.E.O. Studies at the Jet Propulsion Laboratory, in Pasadena, California, folks pore over the data to determine if it’s on a collision course with Earth.

V

What if it is? NASA has partnered with the European Space Agency to test out a technology to alter a rogue asteroid’s trajectory to ensure that it misses Earth.

The “Asteroid Impact and Deflection Assessment” mission would target Didymos, a binary asteroid system, in which the smaller of the two objects spins tightly around the other, a short distance away. Two independent spacecraft would be sent to the pair: one would orbit the primary body and the other would ram into its “moonlet.”

The orbiter, operated by the European agency, is set for launch in October 2020. The second vehicle, guided by John Hopkins’ Applied Physics Laboratory, in Laurel, Maryland, will set off in December 2020 to rendezvous with its quarry. In October 2022, when Didymos is within seven million miles of Earth, it’ll ram into its moonlet at about 14,000 m.p.h. (NASA tried out this know-how in 2005, when it ran a spacecraft into comet Tempel-1.)

The collision will change the speed of the moonlet in its orbit around its parent body by one percent. If this happens, it’ll be the first time that humankind would’ve played a role in changing the dynamics of a celestial body in a measurable way.

The other alternative NASA has been working on would attempt to slowly steer a menacing asteroid out of a hazardous orbit by simply, having a heavy spacecraft hover near it. Its “Asteroid Redirect” mission would employ a “gravity tractor”—the space equivalent of a tow truck—to gently nudge it without making contact, employing only gravity as a towline.

In some instances, an asteroid passes through what’s known as a “keyhole,” a very narrow region of space, where a planet’s gravity would come to act on it—to its own detriment—such that it’d hit the planet when it swings by it on a future orbital pass. If it could be made to skip the keyhole, though, it’d safely fly past the planet. That’s where a gravity tractor could do the trick.

Two bodies, in close proximity, “pull” each other with a force equal to their respective masses. Likewise, so does the spacecraft and the asteroid, even though the tug of the former is puny; a David to the latter’s Goliath. But if the vehicle lingered long enough in its vicinity, it’d be able to move it, albeit, imperceptibly slowly.

All that it’d need to do is fire its engines away from it. The feeble, but steady, thrust would alter its course by making it accelerate toward it and so, moving it out of the keyhole.

VI

The science-fiction writer, Larry Niven, once said: “The dinosaurs became extinct because they didn’t have a space program.” Fortunately, we do and one that’s been keeping a vigilant eye out for these ominous cosmic gatecrashers.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s